Title here
Summary here
To see project SLAs in action have a look at Stage 1: Project Start.
{
% This key enables more verbose logging in the manager and project observer.
"verbose": true, % default=false, optional
% This ID should be the same as for the orchestrator.
"customerID": "Admin",
% FLOps has only been tested for GitHub so far.
"ml_repo_url": "https://github.com/Malyuk-A/flops_ml_repo_mnist_sklearn",
% Supported flavors include: sklearn, pytorch, tensorflow, keras.
"ml_model_flavor": "sklearn",
% This key only works for special repositories intended for development.
% It tells the builder to use prebuilt base images to significantly speed up image builds and development.
"use_devel_base_images": false, % default=false, optional
% This key expects a list of target platforms on which the built images should run.
% It supports linux/amd64 and linux/arm64.
"supported_platforms": ["linux/amd64"], % default=["linux/amd64"], optional
"training_configuration": {
% This key specifies the FL type.
% FLOps supports classic and hierarchical modes.
"mode": "classic", % default="classic", optional
% Requested data tags should match available data on learner nodes.
% Multiple different tags can be requested.
% The ML data server will use local data fragments that match any of the provided tags.
% If no data tags are provided the learner will notify watchers that it cannot find any data.
"data_tags": ["mnist"],
% Training cycles only apply to the hierarchical mode.
"training_cycles: 1, % default=1, optional
% This key tells learners the number of training and evaluation rounds to perform.
"training_rounds": 3, % default=3, optional
% Clients mean learners in this context.
"min_available_clients": 2, % default=1, optional
"min_fit_clients": 2, % default=1, optional
"min_evaluate_clients": 2 % default=1, optional
},
% FLOps supports these two post-training steps.
"post_training_steps": ["build_image_for_trained_model", "deploy_trained_model_image"], % default=[], optional
% These are optional values that require fine-tuning.
% Note that these values are not recommendations but placeholder values.
"resource_constraints": {
"memory": 250, % in MB
"vcpus": 1,
"storage": 25 % in MB
}
}
The following SLA shows a simple classic FL project configuration with both post-training steps enabled. It requires two learners for training.
{
"verbose": true,
"customerID": "Admin",
"ml_repo_url": "https://github.com/Malyuk-A/flops_ml_repo_mnist_sklearn",
"ml_model_flavor": "sklearn",
"training_configuration": {
"data_tags": ["mnist"],
"min_available_clients": 2,
"min_fit_clients": 2,
"min_evaluate_clients": 2
},
"post_training_steps": ["build_image_for_trained_model", "deploy_trained_model_image"],
}
The next SLA displays a more advanced configuration with HFL, multi-platform support, and more FL actors.
{
"customerID": "Admin",
"ml_repo_url": "https://github.com/Malyuk-A/flops_ml_repo_cifar10_pytorch",
"ml_model_flavor": "pytorch",
"supported_platforms": ["linux/amd64", "linux/arm64"],
"training_configuration": {
"mode": "hierarchical",
"data_tags": ["cifar10"],
"training_cycles": 10,
"training_rounds": 5,
"min_available_clients":3,
"min_fit_clients": 3,
"min_evaluate_clients": 3
},
"post_training_steps": ["build_image_for_trained_model", "deploy_trained_model_image"],
}
We encourage you to take existing SLAs and play around with different values.